*To find solutions to the Klein-Gordon (K-G) equation to describe particle interaction around mini black holes (BH) *To calculate the absorption cross-section of nuclei by the mini BH

The generalized metric

$d s^{2}=g_{00}(r, t) c^{2} d t^{2}-2 g_{0 i} c d t d x^{i}-g_{j i}(r, t) d x^{\prime} d x^{i}$,
$i, j=1,2,3$
describes time (t) and space in three dimensions (r).
In General Relativity, observation depends on the adopted coordinate system. For static black holes, we generally consider the Schwarzschild metric, which has a nonphysical singularity at the event horizon: $r=r_{s}$ Where the Schwarzchild radius

$$
r_{s}=\frac{2 G M}{c^{2}}
$$

This singularity means that a particle will never reach the event horizon!
To remove the Schwarzschild Singularity we introduce Eddington-Finkelstein (E-F) coordinates with the contravariant and covariant tensors:

The negative determinant indicates that locally, the space is pseudo-Euclidean.

Evaluating the general metric with elements of the contravariant tensor, we get the E-F metric:

$$
d s^{2}=g_{\mu \nu} d x^{\mu} d x^{\nu}=\left(1-\frac{r_{s}}{r}\right) c^{d} d t^{2}-2 \frac{r^{c} \cdot}{r} d t d r-\left(1+\frac{r}{r}\right) d r^{2}-r^{2} d \Omega
$$

*Star-collapse- Formed by catastrophic collapse of a massive star ($\mathrm{M}>\mathrm{M}_{\text {sun }}$)
*Primordial (mini)- Formed by density irregularities just after the Big Bang
*Galactic-merger of mini BH's???

Mini Black Holes
To use this QM approach, the wavelength of a particle in the field of the mini BH must be To use this QM approach, the wavelength of a particle in the field of the mini BH must be
comparable to its $r_{\text {s. }}$. We consider a BH with r_{s} on the order of fm (to compare-the sun would form a BH of about 3 km) and around $10^{15} \mathrm{~g}$ (19 orders less massive than the sun). BH 's of this size would have a lifetime around the age of the Universe. Mini BH's would violently evaporate the particles they've gradually accumulated in an amount of Hawking radiation inversely proportional to the mass of the BH . In this model, particles interact quantum mechanically in the relativistic space-time of a mini BH , making it a possible setting to study exciting new physics like quantum gravity.

The extension of the KG equation for curved space is

$$
\hbar^{2} \frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{\mu}} \sqrt{-g} g^{\mu \nu} \frac{\partial}{\partial x^{\nu}} \Psi=-m^{2} c^{2} \Psi
$$

leading to

$$
\begin{aligned}
& \hbar^{2} \frac{1}{r^{2} \sin \theta}\left[\frac{\partial}{\partial x^{0}}\left(r^{2} \sin \theta g^{00} \frac{\partial}{\partial x^{2}} \psi\right)+\frac{\partial}{\partial x^{0}}\left(r^{2} \sin \theta g^{01} \frac{\partial}{\partial x^{1}} \psi\right)+\ldots\right]=-m^{2} c^{2} \psi \\
& \psi \equiv \psi(t, r, \theta, \varphi) \quad \psi(t, r, \theta, \varphi)=\mathrm{e}^{\frac{E^{n}}{\hbar}} \psi(r, \theta, \varphi)
\end{aligned}
$$

Eventually, we get the radial Schrödinger equation (SE) describing the total motion of a particle in the gravitational field of the BH :

```
[-\frac{\mp@subsup{\hbar}{}{2}}{2m}\frac{\mp@subsup{\partial}{}{2}}{\partial\mp@subsup{r}{}{2}}+\mp@subsup{\overline{V}}{1}{}(r)+\mp@subsup{\overline{V}}{2}{}(r)+\mp@subsup{V}{}{N}(r)+\frac{l(l+1)}{2\mu\mp@subsup{r}{}{2}}]\mp@subsup{U}{l}{}(k,r)=\mp@subsup{E}{p}{}\mp@subsup{U}{l}{}(k,r)
```

where, 1 is the orbital angular momentum of the particle.

Using a standard procedure, we get the particle conservation law:

$$
\begin{aligned}
& -i \hbar \int d \vec{r} \nabla \vec{j}=-i \hbar \int d \vec{s} \bullet \vec{j}=\int d \vec{r}\left(\psi^{*} V_{1} \psi-\psi V_{1}^{*} \psi^{*}\right) \\
& \vec{j}=-i \frac{\hbar}{2 m}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right)
\end{aligned}
$$

The LHS is proportional to the absorption cross-section. So, we can use the V_{1} term in the cross section equation to figure Out the absorption.

$$
\begin{aligned}
& \sigma=i \frac{2 m}{\hbar^{2} k} \int d \vec{r}\left(\psi^{*} V_{1} \psi-\psi V_{1}^{*} \psi^{*}\right)=i \frac{2 m}{\hbar^{2} k} 2 \int d \overrightarrow{d r} \psi^{*} V_{1} \psi \\
& =i \frac{4 m}{\hbar^{2} k}(4 \pi)^{2} \sum_{l=0}^{\infty} \frac{2 l+1}{4 \pi} \int_{r>r_{s}}^{\infty} d r \cdot r^{2} \frac{U_{l}(k, r)}{k r}\left(-i \hbar\left[\frac{c r_{s}}{r} \frac{\partial}{\partial r}+\frac{r_{s} c}{2 r^{2}}\right] \frac{U_{l}(k, r)}{k r}\right) \\
& =8 \pi \frac{m c^{2}}{\hbar c} \frac{1}{k^{3}} \sum_{l=0}^{\infty}(2 l+1) U_{l}^{2}(k, r) \\
& U_{l}(k, r)=e^{-\frac{\pi \eta}{2}} \frac{|\Gamma(l+1+i \eta)|}{2 \Gamma(2 l+2)}(2 k r)^{l+1} e^{-i k r_{1}} F_{1}(l+1-i \eta, 2 l+2,2 i k r)
\end{aligned}
$$

where Γ is a Gamma function, ${ }_{1} F_{1}$ is a hypergeometric function obtained for V^{N}, and $\mathrm{V}_{1}+\mathrm{V}_{2}$ are taken to be a perturbation. Using an analogy to the Coulomb potential, we get:

$$
\eta^{c}=\frac{-z_{1} z_{2} e^{2} m}{\hbar k} \rightarrow \eta=\frac{-G M m^{2}}{\hbar k}=\frac{-r_{s}}{\frac{\hbar}{m c} \sqrt{\frac{2 E}{m c^{2}}}}, \quad k=\frac{m v}{\hbar}
$$

Mass gained by a mini BH going through the Sun	
$\rho=1 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$ Sundensity	for $\sigma=100 \mathrm{~b}$
$m=1.66 \cdot 10^{-24} g_{\text {proton mass }}$	$R=7 \cdot 10^{10} \mathrm{~cm}$
$N=\frac{1}{1.66 \cdot 10^{-23}}=6.024 \cdot 10^{23} \mathrm{~cm}^{-3}$	volume per proton

